Multi-task feature selection via supervised canonical graph matching for diagnosis of autism spectrum disorder
نویسندگان
چکیده
منابع مشابه
Feature Selection Based on Genetic Algorithm in the Diagnosis of Autism Disorder by fMRI
Background: Autism Spectrum Disorder (ASD) occurs based on the continuous deficit in a person’s verbal skills, visual, auditory, touch, and social behavior. Over the last two decades, one of the most important approaches in studying brain functions in autistic persons is using functional Magnetic Resonance Imaging (fMRI). Objectives: It is common to use all brain regions in functional extracti...
متن کاملMulti-task Feature Selection
We address joint feature selection across a group of classification or regression tasks. In many multi-task learning scenarios, different but related tasks share a large proportion of relevant features. We propose a novel type of joint regularization for the parameters of support vector machines in order to couple feature selection across tasks. Intuitively, we extend the `1 regularization for ...
متن کاملDiscriminative Multi-Task Feature Selection
The effectiveness of supervised feature selection degrades in low training data scenarios. We propose to alleviate this problem by augmenting per-task feature selection with joint feature selection over multiple tasks. Our algorithm builds on the assumption that different tasks have shared structure which could be utilized to cope with data sparsity. The proposed trace-ratio based model not onl...
متن کاملProbabilistic Multi-Task Feature Selection
Recently, some variants of the l1 norm, particularly matrix norms such as the l1,2 and l1,∞ norms, have been widely used in multi-task learning, compressed sensing and other related areas to enforce sparsity via joint regularization. In this paper, we unify the l1,2 and l1,∞ norms by considering a family of l1,q norms for 1 < q ≤ ∞ and study the problem of determining the most appropriate spars...
متن کاملMulti-Task Feature Selection on Multiple Networks via Maximum Flows
We propose a new formulation of multi-task feature selection coupled with multiple network regularizers, and show that the problem can be exactly and efficiently solved by maximum flow algorithms. This method contributes to one of the central topics in data mining: How to exploit structural information in multivariate data analysis, which has numerous applications, such as gene regulatory and s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Brain Imaging and Behavior
سال: 2015
ISSN: 1931-7557,1931-7565
DOI: 10.1007/s11682-015-9360-1